GRASS logo

NAME

t.pytorch.predict - Apply a pytorch model to imagery groups in a Space Time Raster Dataset (STRDS)

KEYWORDS

temporal, machine learning, deep learning, pytorch, unet, GPU, predict, imagery, raster, strds

SYNOPSIS

t.pytorch.predict
t.pytorch.predict --help
t.pytorch.predict [-cels] input=name [where=sql_query] [reference_strds=name[,name,...]] [reference_where=sql_query] [reference_suffix=string] [sampling=name[,name,...]] [offset=integer] [auxillary_group=name] [region_relation=string] output=name [title=string] [description=string] model=name model_code=name [vector_tiles=name] [tile_size=integer[,integer,...]] [overlap=integer] configuration=name [mask_json=name] [nprocs=integer] [basename=string] [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:

-c
Use CPU as device for prediction, default is use cuda (GPU) if detected
-e
Extend existing STRDS (requires overwrite flag)
-l
Limit output to valid range (data outside the valid range is set to valid min/max)
-s
Skip incomplete groups (do not fail)
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog

Parameters:

input=name [required]
Name of the input space time raster dataset
where=sql_query
WHERE conditions of SQL statement without 'where' keyword used in the temporal GIS framework
Example: start_time > '2001-01-01 12:30:00'
reference_strds=name[,name,...]
Name of the input space time raster datasets
reference_where=sql_query
WHERE conditions of SQL statement without 'where' keyword used in the temporal GIS framework
Where clause to select reference images
reference_suffix=string
Suffix to be added to the semantic label of the raster maps in the reference_strds
sampling=name[,name,...]
The method to be used for sampling the input dataset
Options: start, during, overlap, contain, equal, follows, precedes
Default: start
offset=integer
Offset that defines a reference map (e.g. -1 for the previous map (group) in the input STRDS)
auxillary_group=name
Input imagery group with time independent raster maps
region_relation=string
Process only maps with this spatial relation to the current computational region
Options: overlaps, contains, is_contained
output=name [required]
Name of the output space time raster dataset
title=string
Title of the resulting STRDS
description=string
Description of the resulting STRDS
model=name [required]
Path to input deep learning model file (.pt)
model_code=name [required]
Path to input deep learning model code (.py)
vector_tiles=name
Name of input vector map
Vector map with tiles to process (will be extended by "overlap")
tile_size=integer[,integer,...]
Number of rows and columns in tiles (rows, columns)
overlap=integer
Number of rows and columns of overlap in tiles
configuration=name [required]
Path to JSON file with band configuration in the input deep learning model
mask_json=name
JSON file with one or more mask band or map name(s) and reclass rules for masking, e.g. {"mask_band": "1 thru 12 36 = 1", "mask_map": "0"}
nprocs=integer
Number of threads for parallel computing
Default: 1
basename=string
Name for output raster map

Table of contents

DESCRIPTION

t.pytorch.predict is a wrapper around the i.pytorch.predict module and supports all relevant flags and options of that module. t.pytorch.predict compiles the input imagery groups to i.pytorch.predict from the temporal granules in the input STRDS. Those groups per granule are complemented with raster maps from a auxillary_group and/or another reference_strds, where maps in the reference STRDS are matched with the input STRDS in space and time using the user-defined sampling. If a reference STRDS or an auxaliry group is used it often makes sense to provide a basename for the resulting raster maps.

In order to run the module with tile- or orbit repeat-passes, the user should loop over tiles or orbits and use orbit- or tile IDs in the where clause of the input and reference STRDS. STRDS containing mosaics with equal spatial extent do not require special handling. Currently supported use-cases are:

  1. only input STRDS, usually grouped ("one process per scene")
  2. only input STRDS, usually grouped, with reference defined by offset (e.g. for "repeat-pass")
  3. input STRDS and reference STRDS matched according to temporal relation given in sampling with single or grouped semantic labels

For more information on how machine learning models are applied to the imagery groups, please consult the manual of i.pytorch.predict.

EXAMPLES

Run cloud detection on a Sentinel-3 SLSTR time series

t.pytorch.predict -e --o --v input=Sentinel_3_SLSTR_RBT_L2 model=cloud.pt \
  output=Sentinel_3_SLSTR_RBT_L2 tile_size=1024,1024 overlap=164 \
  configuration=cloud.json model_code=S3_models/ nprocs=8 \
  mask_json=mask_land.json where="start_time > '2024-02-02'"

t.info Sentinel_3_SLSTR_RBT_L2
(...)

Estimate FSC on Sentinel-3 SLSTR time series

time t.pytorch.predict -e --o --v input=Sentinel_3_SLSTR_RBT_L2 model=fsc.pt \
  output=Sentinel_3_SLSTR_RBT_L2 tile_size=1024,1024 overlap=164 \
  configuration=fsc.json model_code=S3_models/ nprocs=8 \
  mask_json=mask_cloud_dl.json where="start_time > '2024-02-02'"

t.info Sentinel_3_SLSTR_RBT_L2
(...)

SEE ALSO

i.pytorch.predict,

Temporal data processing Wiki

AUTHOR

Stefan Blumentrath, NVE

SOURCE CODE

Available at: t.pytorch.predict source code (history)

Accessed: Friday Jan 17 12:43:39 2025


Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

© 2003-2024 GRASS Development Team, GRASS GIS 8.4.0 Reference Manual