ebm.model.energy_requirement module

yearly_reduction(x)[source]
class EnergyRequirement(building_code_list: List[str], period: YearRange = YearRange(start=2010, end=2050), calibration_year: int = 1999, database_manager=None)[source]

Bases: object

__init__(building_code_list: List[str], period: YearRange = YearRange(start=2010, end=2050), calibration_year: int = 1999, database_manager=None)[source]
calculate_for_building_category(database_manager: DatabaseManager = None) DataFrame[source]

Calculates energy requirements for a single building category

Parameters

database_manager: DatabaseManager

optional database_manager used to load input parameters

Returns

Iterable of pd.Series

indexed by year, building_category, TEK, purpose, building_condition column kwh_m2 representing energy requirement

calculate_energy_requirement(all_building_categories, all_purpose, all_building_codes, energy_requirement_original_condition, model_years, most_conditions, database_manager) DataFrame[source]
calculate_energy_reduction(energy_requirements: DataFrame, model_years: YearRange, policy_improvement: DataFrame, reduction_per_condition: DataFrame, yearly_improvement: DataFrame) DataFrame[source]

Calculate and combine all reduction factors for energy needs into a single Dataframe.

Parameters

energy_requirements : pd.DataFrame model_years : YearRange policy_improvement : pd.DataFrame reduction_per_condition : pd.DataFrame yearly_improvement : pd.DataFrame

Returns

pd.DataFrame

merge_energy_requirement_reductions(condition_factor, yearly_improvements, reduction_policy)[source]
calculate_reduction_yearly(df_years: DataFrame, yearly_improvement: DataFrame) DataFrame[source]

Calculate factor for yearly reduction for each entry in the DataFrame yearly_improvement.

This method merges the yearly improvement data with the policy improvement data, adjusts the efficiency start year if the period end year is greater, and calculates the yearly reduction based on the yearly efficiency improvement.

Parameters

df_yearspd.DataFrame

DataFrame containing all years for which to calculate factors. Must include column ‘year’.

yearly_improvementpd.DataFrame

DataFrame containing yearly improvement information. Must include columns ‘yearly_efficiency_improvement’, and ‘efficiency_start_year’.

Returns

pd.DataFrame

DataFrame with the calculated ‘reduction_yearly’ column and updated entries.

calculate_reduction_policy(policy_improvement: DataFrame, all_things) DataFrame[source]

Calculate the reduction policy for each entry in the DataFrame.

This method computes the reduction policy by first calculating the number of years since the start of the period. It then applies the yearly_reduction function to each relevant entry to determine the reduction policy.

Parameters

policy_improvementpd.DataFrame

DataFrame containing policy improvement information. Must include columns ‘year’ and ‘period_start_year’.

all_things: pd.DataFrame

DataFrame containing every combination of building_category, TEK, purpose, year

Returns

pd.DataFrame

DataFrame with the calculated ‘reduction_policy’ column and updated entries.

calculate_reduction_condition(reduction_per_condition: DataFrame) DataFrame[source]

Calculate the reduction condition for each entry in the DataFrame.

This method computes the reduction condition by subtracting the reduction share from 1.0. It also fills any NaN values in the ‘reduction_condition’ column with 1.0.

Parameters

reduction_per_conditionpd.DataFrame

DataFrame containing the reduction share information. Must include columns ‘reduction_share’ and ‘building_code’.

Returns

pd.DataFrame

DataFrame with the calculated ‘reduction_condition’ column and filtered entries.

calculate_energy_requirements(building_categories: Iterable[BuildingCategory] = None) DataFrame[source]

Calculates energy requirements for building categories

Parameters

building_categoriesIterable[BuildingCategory]

Iterable containing building categories on which to calculate energy requirements.

Returns

Iterable of pd.Series

indexed by year, building_category, TEK, purpose, building_condition column kwh_m2 representing energy requirement

static new_instance(period, calibration_year, database_manager=None)[source]
main()[source]